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Abstract—Tangential vector finite elements (TVFE’s) overcome
most of the shortcomings of node-based finite elements for elec-
tromagnetic simulations. Hierarchical TVFE’s are of considerable
practical interest since they allow use of effective selective field
expansions where different order TVFE’s are combined within
a computational domain. For a tetrahedral element, this letter
proposes a set of hierarchical mixed-order TVFE’s up to and
including order 2.5 that differ from previously presented TVFE’s.
The hierarchical mixed-order TVFE’s are constructed as the
three-dimensional equivalent of hierarchical mixed-order TVFE’s
for a triangular element. They can be formulated for higher
orders than 2.5, and the generalization to curved tetrahedral
elements is straightforward.

Index Terms—Finite-element method, hierarchical basis func-
tions sets, higher order basis functions.

I. INTRODUCTION

T ANGENTIAL vector finite elements (TVFE’s) based on
expanding a vector field in terms of values associated

with element edges have been shown to be free of the
shortcomings of node-based finite elements [1]. TVFE’s are
therefore of considerable practical interest. Néd́elec pointed
out [2], [3] that it may not necessarily be advantageous
to employ polynomial-complete TVFE’s when applying the
finite-element method (FEM). This leads to the introduction
of attractive mixed-order TVFE’s. A set of TVFE’s is referred
to as hierarchical if the vector basis functions forming the

th-order TVFE are a subset of the vector basis functions
forming the th-order TVFE, and this desirable property
allows for effective selective field expansions combining dif-
ferent order TVFE’s in different regions of the computational
domain. For a large class of electromagnetic problems, hier-
archical mixed-order TVFE’s are therefore attractive for FEM
discretization.

For a tetrahedral element, the lowest order TVFE was
originally introduced by Whitney [4]. It provides a constant
tangential/linear normal (CT/LN) field along element edges
and a linear field at element faces and inside the element
(complete to order 0.5). Mixed-order TVFE’s providing a
linear tangential/quadratic normal (LT/QN) field along element
edges and a quadratic field at element faces and inside the ele-
ment (complete to order 1.5) were presented by Leeet al. [5],
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Fig. 1. Illustration of tetrahedral element and the numbering of nodes and
edges.

Webb and Forghani [6], Savage and Peterson [7], and Graglia
et al. [8]. Only the TVFE presented by Webb and Forghani
compares to the Whitney TVFE in a hierarchical fashion.
Nonhierarchical mixed-order TVFE’s providing a quadratic
tangential/cubic normal (QT/CuN) field along element edges
and a cubic field at element faces and inside the element
(complete to order 2.5) were presented by Savage and Peterson
[7] (a correction to this TVFE was recently given by Peterson
[9]) and Gragliaet al. [8].

Hierarchical mixed-order TVFE’s for a tetrahedral element
have only been proposed up to and including order 1.5
[6], and these were written up by inspection. The purpose
of this letter is to propose a set of hierarchical mixed-
order TVFE’s for a tetrahedral element beyond order 1.5.
Specifically, hierarchical mixed-order TVFE’s are presented
up to and including order 2.5 where the mixed-order TVFE of
order 1.5 differs from the one presented by Webb and Forghani
[6]. We derive the hierarchical mixed-order TVFE’s from
existing nonhierarchical mixed-order TVFE’s for a tetrahedral
element [7], [9] and existing hierarchical mixed-order TVFE’s
for a triangular element [10], [11] in a systematic fashion that
makes the proposed set of hierarchical mixed-order TVFE’s
for a tetrahedral element the direct three-dimensional (3-D)
equivalent of the set of hierarchical mixed-order TVFE’s
for a triangular element [10], [11]. Hierarchical mixed-order
TVFE’s for higher orders than 2.5 can be derived by modifying
the TVFE’s proposed by Gragliaet al. [8], and their extension
to curved tetrahedral elements is straightforward via a simple
mapping; see, for instance, [8].

II. FORMULATION

We consider a tetrahedral element with nodes 1, 2, 3, and 4
as shown in Fig. 1. The volume of the tetrahedron is denoted
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by . Simplex (or volume) coordinates and at
a point P are defined in the usual manner, viz.
where denotes the volume of the tetrahedron formed by
P and the nodes of the triangular face opposite to node.
Below, vector basis functions will be formulated in terms of
these coordinates. Vector basis functions associated with an
edge or a face of the tetrahedron will be referred to as edge-
or face-based vector basis functions, respectively. All other
vector basis functions will be referred to as cell-based vector
basis functions.

A mixed-order TVFE of order 0.5 providing CT/LN varia-
tion along element edges and linear variation at element faces
and inside the element is characterized by six linearly inde-
pendent vector basis functions. Whitney initially presented six
such vector basis functions [4]. The 3-D equivalent of the two-
dimensional (2-D) CT/LN vector basis functions presented in
[10], [11] is identical to the vector basis functions presented
by Whitney [4]. The six edge-based vector basis functions are1

(1)

A mixed-order TVFE of order 1.5 providing LT/QN vari-
ation along element edges and quadratic variation at element
faces and inside the element is characterized by 20 linearly
independent vector basis functions. Savage and Peterson [7]
proposed the 12 edge-based vector basis functions

(2)

and the eight face-based vector basis functions

(3)

The 20 linearly independent vector basis functions (2), (3) do
not compare to the Whitney vector basis functions (1) in a
hierarchical fashion. We propose to replace the 12 edge-based
basis functions (2) by

(4)

The 20 linearly independent vector basis functions (3)–(4)
form a mixed-order TVFE of order 1.5 that compares hier-
archically to the proposed mixed-order TVFE of order 0.5.

A mixed-order TVFE of order 2.5 providing QT/CuN
variation along element edges and cubic variation at element
faces and inside the element is characterized by 45 linearly
independent vector basis functions. Savage and Peterson2 [7],
[9] proposed the 18 edge-based vector basis functions

(5)

(6)

1The vector basis functions presented in this letter are not normalized.
Furthermore, the indexesi; j; and k in (1)–(12) are implicitly assumed to
belong to the setf1; 2; 3; 4g.

2A correction of the QT/CuN vector basis functions initially proposed by
Savage and Peterson [7] was given by Peterson [9]. This corrected set is the
one presented here.

the face-based vector basis functions

(7)

(8)

(9)

and the three cell-based vector basis functions

(10)

The 45 linearly independent vector basis functions (5)–(10)
do not compare to the Whitney vector basis functions (1) in a
hierarchical fashion. We propose to replace the 18 edge-based
basis functions (5)–(6) by

(11)

Further, we propose to replace the eight face-based vector basis
functions (7) by

(12)

The 45 linearly independent vector basis functions (8)–(12)
form a mixed-order TVFE of order 2.5 that compares hier-
archically to the proposed mixed-order TVFE’s of order 0.5
and 1.5.

The vector basis functions (1), (3)–(4), and (8)–(12) form
a set of hierarchical mixed-order TVFE’s of orders 0.5, 1.5,
and 2.5, respectively. Such a set offers several advantages
over nonhierarchical mixed-order TVFE’s, especially for FEM
solution of electromagnetic problems where the field varies
nonuniformly over the computational domain. In such cases,
a lower order TVFE can be employed in regions where the
field varies smoothly whereas a higher order TVFE can be
employed in regions where the field varies rapidly thus leading
to an effective discretization of the unknown electromagnetic
field.

III. CONCLUSION

For a tetrahedral element, we proposed a set of hierarchical
mixed-order TVFE’s up to and including order 2.5. These
differ from previously presented TVFE’s and were constructed
as the 3-D equivalent of hierarchical mixed-order TVFE’s for
a triangular element. TVFE’s for higher orders than 2.5 can
be formulated in a similar manner and the generalization to
curved tetrahedral elements is straightforward.
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[3] J. C. Ńed́elec, “A new family of mixed finite elements inR3,” Numer.
Math., vol. 50, pp. 57–81, 1986.

[4] H. Whitney, Geometric Integration Theory. Princeton, NJ: Princeton
Univ. Press, 1957.

[5] J. F. Lee, D. K. Sun, and Z. J. Cendes, “Tangential vector finite elements
for electromagnetic field computation,”IEEE Trans. Magn., vol. 27, pp.
4032–4035, Sept. 1991.

[6] J. P. Webb and B. Forghani, “Hierarchal scalar and vector tetrahedra,”
IEEE Trans. Magn., vol. 29, pp. 1495–1498, Mar. 1993.

[7] J. S. Savage and A. F. Peterson, “Higher-order vector finite elements
for tetrahedral cells,”IEEE Trans. Microwave Theory Tech., vol. 44, pp.
874–879, June 1996.

[8] R. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order interpolary
vector bases for computational electromagnetics,”IEEE Trans. Antennas
Propagat., vol. 45, pp. 329–342, Mar. 1997.

[9] A. F. Peterson, private communication, e-mail, Aug. 1997.
[10] L. S. Andersen and J. L. Volakis, “A novel class of hierarchical higher

order tangential vector finite elements for electromagnetics,” inProc.
IEEE Antennas and Propagation Society Int. Symp. 1997, Montréal, P.Q.,
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